Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 622
Filtrar
1.
Nature ; 624(7990): 115-121, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38030724

RESUMO

The long-term diversification of the biosphere responds to changes in the physical environment. Yet, over the continents, the nearly monotonic expansion of life started later in the early part of the Phanerozoic eon1 than the expansion in the marine realm, where instead the number of genera waxed and waned over time2. A comprehensive evaluation of the changes in the geodynamic and climatic forcing fails to provide a unified theory for the long-term pattern of evolution of life on Earth. Here we couple climate and plate tectonics models to numerically reconstruct the evolution of the Earth's landscape over the entire Phanerozoic eon, which we then compare to palaeo-diversity datasets from marine animal and land plant genera. Our results indicate that biodiversity is strongly reliant on landscape dynamics, which at all times determine the carrying capacity of both the continental domain and the oceanic domain. In the oceans, diversity closely adjusted to the riverine sedimentary flux that provides nutrients for primary production. On land, plant expansion was hampered by poor edaphic conditions until widespread endorheic basins resurfaced continents with a sedimentary cover that facilitated the development of soil-dependent rooted flora, and the increasing variety of the landscape additionally promoted their development.


Assuntos
Organismos Aquáticos , Biodiversidade , Evolução Biológica , Clima , Planeta Terra , Plantas , Animais , Oceanos e Mares , Solo/química , Plantas/classificação , Organismos Aquáticos/classificação , Modelos Biológicos , Rios/química , Sedimentos Geológicos/análise , Sedimentos Geológicos/química
2.
Nature ; 618(7966): 767-773, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37286610

RESUMO

Eukaryotic life appears to have flourished surprisingly late in the history of our planet. This view is based on the low diversity of diagnostic eukaryotic fossils in marine sediments of mid-Proterozoic age (around 1,600 to 800 million years ago) and an absence of steranes, the molecular fossils of eukaryotic membrane sterols1,2. This scarcity of eukaryotic remains is difficult to reconcile with molecular clocks that suggest that the last eukaryotic common ancestor (LECA) had already emerged between around 1,200 and more than 1,800 million years ago. LECA, in turn, must have been preceded by stem-group eukaryotic forms by several hundred million years3. Here we report the discovery of abundant protosteroids in sedimentary rocks of mid-Proterozoic age. These primordial compounds had previously remained unnoticed because their structures represent early intermediates of the modern sterol biosynthetic pathway, as predicted by Konrad Bloch4. The protosteroids reveal an ecologically prominent 'protosterol biota' that was widespread and abundant in aquatic environments from at least 1,640 to around 800 million years ago and that probably comprised ancient protosterol-producing bacteria and deep-branching stem-group eukaryotes. Modern eukaryotes started to appear in the Tonian period (1,000 to 720 million years ago), fuelled by the proliferation of red algae (rhodophytes) by around 800 million years ago. This 'Tonian transformation' emerges as one of the most profound ecological turning points in the Earth's history.


Assuntos
Evolução Biológica , Eucariotos , Fósseis , Bactérias/química , Bactérias/metabolismo , Eucariotos/química , Eucariotos/classificação , Eucariotos/metabolismo , Células Eucarióticas/química , Células Eucarióticas/classificação , Células Eucarióticas/metabolismo , Esteróis/análise , Esteróis/biossíntese , Esteróis/isolamento & purificação , Esteróis/metabolismo , Sedimentos Geológicos/química , Vias Biossintéticas , Organismos Aquáticos/química , Organismos Aquáticos/classificação , Organismos Aquáticos/metabolismo , Biota , Filogenia , História Antiga
3.
Nature ; 614(7949): 713-718, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36792824

RESUMO

The geographic ranges of marine organisms, including planktonic foraminifera1, diatoms, dinoflagellates2, copepods3 and fish4, are shifting polewards owing to anthropogenic climate change5. However, the extent to which species will move and whether these poleward range shifts represent precursor signals that lead to extinction is unclear6. Understanding the development of marine biodiversity patterns over geological time and the factors that influence them are key to contextualizing these current trends. The fossil record of the macroperforate planktonic foraminifera provides a rich and phylogenetically resolved dataset that provides unique opportunities for understanding marine biogeography dynamics and how species distributions have responded to ancient climate changes. Here we apply a bipartite network approach to quantify group diversity, latitudinal specialization and latitudinal equitability for planktonic foraminifera over the past eight million years using Triton, a recently developed high-resolution global dataset of planktonic foraminiferal occurrences7. The results depict a global, clade-wide shift towards the Equator in ecological and morphological community equitability over the past eight million years in response to temperature changes during the late Cenozoic bipolar ice sheet formation. Collectively, the Triton data indicate the presence of a latitudinal equitability gradient among planktonic foraminiferal functional groups which is coupled to the latitudinal biodiversity gradient only through the geologically recent past (the past two million years). Before this time, latitudinal equitability gradients indicate that higher latitudes promoted community equitability across ecological and morphological groups. Observed range shifts among marine planktonic microorganisms1,2,8 in the recent and geological past suggest substantial poleward expansion of marine communities even under the most conservative future global warming scenarios.


Assuntos
Organismos Aquáticos , Biodiversidade , Temperatura Baixa , Foraminíferos , Mapeamento Geográfico , Filogeografia , Plâncton , Análise Espaço-Temporal , Animais , Organismos Aquáticos/classificação , Organismos Aquáticos/isolamento & purificação , Conjuntos de Dados como Assunto , Foraminíferos/classificação , Foraminíferos/isolamento & purificação , Fósseis , História Antiga , Filogenia , Plâncton/classificação , Plâncton/isolamento & purificação , Fatores de Tempo , Hidrobiologia
4.
Nature ; 614(7949): 708-712, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36792825

RESUMO

The latitudinal diversity gradient (LDG) is a prevalent feature of modern ecosystems across diverse clades1-4. Recognized for well over a century, the causal mechanisms for LDGs remain disputed, in part because numerous putative drivers simultaneously covary with latitude1,3,5. The past provides the opportunity to disentangle LDG mechanisms because the relationships among biodiversity, latitude and possible causal factors have varied over time6-9. Here we quantify the emergence of the LDG in planktonic foraminifera at high spatiotemporal resolution over the past 40 million years, finding that a modern-style gradient arose only 15 million years ago. Spatial and temporal models suggest that LDGs for planktonic foraminifera may be controlled by the physical structure of the water column. Steepening of the latitudinal temperature gradient over 15 million years ago, associated with an increased vertical temperature gradient at low latitudes, may have enhanced niche partitioning and provided more opportunities for speciation at low latitudes. Supporting this hypothesis, we find that higher rates of low-latitude speciation steepened the diversity gradient, consistent with spatiotemporal patterns of depth partitioning by planktonic foraminifera. Extirpation of species from high latitudes also strengthened the LDG, but this effect tended to be weaker than speciation. Our results provide a step change in understanding the evolution of marine LDGs over long timescales.


Assuntos
Organismos Aquáticos , Biodiversidade , Foraminíferos , Mapeamento Geográfico , Plâncton , Análise Espaço-Temporal , Organismos Aquáticos/classificação , Organismos Aquáticos/isolamento & purificação , Evolução Biológica , Foraminíferos/classificação , Foraminíferos/isolamento & purificação , Especiação Genética , História Antiga , Filogeografia , Plâncton/classificação , Plâncton/isolamento & purificação , Temperatura , Fatores de Tempo , Água/análise , Hidrobiologia
6.
Harmful Algae ; 120: 102338, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36470602

RESUMO

Thirty-four strains of Heterocapsa were established from Malaysian waters and their morphologies were examined by light, scanning, and transmission electron microscopy. Three species, H. bohaiensis, H. huensis, and H. rotundata, and three new species, H. borneoensis sp. nov., H. limii sp. nov., and H. iwatakii sp. nov. were described in this study. The three species were differentiated morphologically by unique characteristics of cell size, shape, displacement of the cingulum, shape and position of nucleus, the number and position of pyrenoids, and body scale ultrastructure. The species delimitations were robustly supported by the molecular data. A light-microscopy-based key to species of Heterocapsa is established, with two major groups, i.e., species with a single pyrenoid, and species with multiple pyrenoids. Bioassays were conducted by exposing Artemia nauplii to Heterocapsa densities of 1-5 × 105 cells mL-1, and treatments exposed to H. borneoensis showed naupliar mortality, while no naupliar death was observed in the treatments exposed to cells of H. bohaiensis, H. huensis, H. limii, and H. iwatakii. Naupliar death was observed during the initial 24 h for both tested H. borneoensis strains, and mortality rates increased up to 50% after 72-h exposure. This study documented for the first time the diversity and cytotoxic potency of Heterocapsa species from Malaysian waters.


Assuntos
Dinoflagelados , Dinoflagelados/classificação , Dinoflagelados/ultraestrutura , Malásia , Microscopia Eletrônica de Transmissão , Filogenia , Organismos Aquáticos/classificação , Organismos Aquáticos/ultraestrutura , Especificidade da Espécie , Microscopia Eletrônica de Varredura , Artemia/efeitos dos fármacos , Toxinas Marinhas/toxicidade
7.
Nature ; 612(7941): 714-719, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36477531

RESUMO

Molecular phylogenetics of microbial eukaryotes has reshaped the tree of life by establishing broad taxonomic divisions, termed supergroups, that supersede the traditional kingdoms of animals, fungi and plants, and encompass a much greater breadth of eukaryotic diversity1. The vast majority of newly discovered species fall into a small number of known supergroups. Recently, however, a handful of species with no clear relationship to other supergroups have been described2-4, raising questions about the nature and degree of undiscovered diversity, and exposing the limitations of strictly molecular-based exploration. Here we report ten previously undescribed strains of microbial predators isolated through culture that collectively form a diverse new supergroup of eukaryotes, termed Provora. The Provora supergroup is genetically, morphologically and behaviourally distinct from other eukaryotes, and comprises two divergent clades of predators-Nebulidia and Nibbleridia-that are superficially similar to each other, but differ fundamentally in ultrastructure, behaviour and gene content. These predators are globally distributed in marine and freshwater environments, but are numerically rare and have consequently been overlooked by molecular-diversity surveys. In the age of high-throughput analyses, investigation of eukaryotic diversity through culture remains indispensable for the discovery of rare but ecologically and evolutionarily important eukaryotes.


Assuntos
Eucariotos , Cadeia Alimentar , Microbiologia , Filogenia , Organismos Aquáticos/classificação , Organismos Aquáticos/genética , Organismos Aquáticos/ultraestrutura , Biodiversidade , Ecologia , Eucariotos/classificação , Eucariotos/genética , Eucariotos/ultraestrutura , Células Eucarióticas/classificação , Células Eucarióticas/metabolismo , Células Eucarióticas/ultraestrutura , Comportamento Predatório , Especificidade da Espécie
8.
Nature ; 612(7941): 764-770, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36477536

RESUMO

The ocean-atmosphere exchange of CO2 largely depends on the balance between marine microbial photosynthesis and respiration. Despite vast taxonomic and metabolic diversity among marine planktonic bacteria and archaea (prokaryoplankton)1-3, their respiration usually is measured in bulk and treated as a 'black box' in global biogeochemical models4; this limits the mechanistic understanding of the global carbon cycle. Here, using a technology for integrated phenotype analyses and genomic sequencing of individual microbial cells, we show that cell-specific respiration rates differ by more than 1,000× among prokaryoplankton genera. The majority of respiration was found to be performed by minority members of prokaryoplankton (including the Roseobacter cluster), whereas cells of the most prevalent lineages (including Pelagibacter and SAR86) had extremely low respiration rates. The decoupling of respiration rates from abundance among lineages, elevated counts of proteorhodopsin transcripts in Pelagibacter and SAR86 cells and elevated respiration of SAR86 at night indicate that proteorhodopsin-based phototrophy3,5-7 probably constitutes an important source of energy to prokaryoplankton and may increase growth efficiency. These findings suggest that the dependence of prokaryoplankton on respiration and remineralization of phytoplankton-derived organic carbon into CO2 for its energy demands and growth may be lower than commonly assumed and variable among lineages.


Assuntos
Organismos Aquáticos , Archaea , Bactérias , Ciclo do Carbono , Respiração Celular , Plâncton , Alphaproteobacteria/genética , Alphaproteobacteria/crescimento & desenvolvimento , Alphaproteobacteria/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Dióxido de Carbono/metabolismo , Plâncton/classificação , Plâncton/genética , Plâncton/crescimento & desenvolvimento , Plâncton/metabolismo , Água do Mar/microbiologia , Organismos Aquáticos/classificação , Organismos Aquáticos/genética , Organismos Aquáticos/crescimento & desenvolvimento , Organismos Aquáticos/metabolismo , Archaea/genética , Archaea/crescimento & desenvolvimento , Archaea/metabolismo , Respiração Celular/fisiologia , Fotossíntese
9.
BMC Plant Biol ; 22(1): 106, 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35260081

RESUMO

BACKGROUND: Hydrocharis L. and Limnobium Rich. are small aquatic genera, including three and two species, respectively. The taxonomic status, phylogenetic relationships and biogeographical history of these genera have remained unclear, owing to the lack of Central African endemic H. chevalieri from all previous studies. We sequenced and assembled plastomes of all three Hydrocharis species and Limnobium laevigatum to explore the phylogenetic and biogeographical history of these aquatic plants. RESULTS: All four newly generated plastomes were conserved in genome structure, gene content, and gene order. However, they differed in size, the number of repeat sequences, and inverted repeat borders. Our phylogenomic analyses recovered non-monophyletic Hydrocharis. The African species H. chevalieri was fully supported as sister to the rest of the species, and L. laevigatum was nested in Hydrocharis as a sister to H. dubia. Hydrocharis-Limnobium initially diverged from the remaining genera at ca. 53.3 Ma, then began to diversify at ca. 30.9 Ma. The biogeographic analysis suggested that Hydrocharis probably originated in Europe and Central Africa. CONCLUSION: Based on the phylogenetic results, morphological similarity and small size of the genera, the most reasonable taxonomic solution to the non-monophyly of Hydrocharis is to treat Limnobium as its synonym. The African endemic H. chevalieri is fully supported as a sister to the remaining species. Hydrocharis mainly diversified in the Miocene, during which rapid climate change may have contributed to the speciation and extinctions. The American species of former Limnobium probably dispersed to America through the Bering Land Bridge during the Miocene.


Assuntos
Organismos Aquáticos/classificação , Organismos Aquáticos/genética , Evolução Molecular , Genomas de Plastídeos , Hydrocharitaceae/classificação , Hydrocharitaceae/genética , Filogeografia , Europa (Continente)
10.
Zoolog Sci ; 39(1): 7-15, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35106990

RESUMO

Taxonomic studies on marine invertebrates have been prominent in Japan since the 19th century. Globally, taxonomy was reported to have been in recession since the early 21st century, but it is not clear if it is still in hardship or is making a recovery in recent years in Japan. In order to comprehend the status quo of taxonomic studies on marine invertebrates in Japan, we compiled a list of marine invertebrate species newly described from the exclusive economic zone of this country during the period between 2003 and 2020 and investigated trends by making comparisons of higher taxa and academic journals in terms of the numbers of new species and taxonomic authors. We noticed that recruitment of new researchers into taxonomic studies is evident in some taxa. We also found that certain articles with descriptions of new species are now being published in journals aimed at general biology/zoology, not oriented principally to taxonomy. We consider from our analyses that taxonomic studies on marine invertebrates in Japan show signs of resurgence, but development of new taxonomists is awaited in certain taxa.


Assuntos
Organismos Aquáticos/classificação , Invertebrados , Animais , Invertebrados/classificação , Japão
11.
PLoS One ; 17(2): e0263377, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35108340

RESUMO

Understanding long-term trends in marine ecosystems requires accurate and repeatable counts of fishes and other aquatic organisms on spatial and temporal scales that are difficult or impossible to achieve with diver-based surveys. Long-term, spatially distributed cameras, like those used in terrestrial camera trapping, have not been successfully applied in marine systems due to limitations of the aquatic environment. Here, we develop methodology for a system of low-cost, long-term camera traps (Dispersed Environment Aquatic Cameras), deployable over large spatial scales in remote marine environments. We use machine learning to classify the large volume of images collected by the cameras. We present a case study of these combined techniques' use by addressing fish movement and feeding behavior related to halos, a well-documented benthic pattern in shallow tropical reefscapes. Cameras proved able to function continuously underwater at deployed depths (up to 7 m, with later versions deployed to 40 m) with no maintenance or monitoring for over five months and collected a total of over 100,000 images in time-lapse mode (by 15 minutes) during daylight hours. Our ResNet-50-based deep learning model achieved 92.5% overall accuracy in sorting images with and without fishes, and diver surveys revealed that the camera images accurately represented local fish communities. The cameras and machine learning classification represent the first successful method for broad-scale underwater camera trap deployment, and our case study demonstrates the cameras' potential for addressing questions of marine animal behavior, distributions, and large-scale spatial patterns.


Assuntos
Organismos Aquáticos/classificação , Recifes de Corais , Ecossistema , Peixes/classificação , Processamento de Imagem Assistida por Computador/métodos , Aprendizado de Máquina , Fotografação/métodos , Animais , Dinâmica Populacional , Especificidade da Espécie
12.
Sci China Life Sci ; 65(2): 426-437, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34156600

RESUMO

Little is known about ocean viromes and the ecological drivers of the evolution of aquatic RNA viruses. This study employed a meta-transcriptomic approach to characterize the viromes of 58 marine invertebrate species across three seas. This revealed the presence of 315 newly identified RNA viruses in nine viral families or orders (Durnavirales, Totiviridae, Bunyavirales, Hantaviridae, Picornavirales, Flaviviridae, Hepelivirales, Solemoviridae, and Tombusviridae), with most of them being sufficiently divergent to the already documented viruses. Notably, this study revealed three marine invertebrate hantaviruses that are rooted to vertebrate hantaviruses, further supporting that hantaviruses may have a marine origin. We have also found evidence for possible host sharing and switch events during virus evolution. Overall, we have revealed the hidden diversity of marine invertebrate RNA viruses.


Assuntos
Organismos Aquáticos/virologia , Invertebrados/virologia , Vírus de RNA/classificação , Viroma , Animais , Organismos Aquáticos/classificação , Ecossistema , Genoma Viral/genética , Especificidade de Hospedeiro , Invertebrados/classificação , Oceanos e Mares , Filogenia , Vírus de RNA/genética , Vírus de RNA/isolamento & purificação , RNA Viral/genética , Viroma/genética
13.
Microbiol Spectr ; 9(3): e0147021, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34908435

RESUMO

Evidence increasingly suggests planktonic fungi (or mycoplankton) play an important role in marine food webs and biogeochemical cycles. In order to better understand their ecological role and how oceanographic gradients from the coastal to open ocean shape the mycoplankton community, molecular approaches were used to study fungal dynamics along a repeatedly sampled, five-station transect beginning at the mouth of an estuary and continuing 87 km across the continental shelf to the oligotrophic waters at the boundary of the Sargasso Sea. Similar to patterns in chlorophyll a, fungal 18S rRNA gene abundance showed a sharp decrease from nearshore to offshore stations. While Shannon's diversity was not statistically different across the transect, nonmetric multidimensional scaling (NMDS) ordination revealed that fungal communities at the nearshore station were significantly different from those at other stations. Even though spatial gradients were consistently strong, the shelf mycoplankton were more similar to those of the offshore communities when temperature was high (>20°C) and while they shifted toward the nearshore communities when temperature was low (<19°C), suggesting a role for additional seasonal factors (such as temperature) in shaping mycoplankton distributions. However, overall phylotype distributions were patchy with few taxa observed at all stations and the majority observed at a single station with the nearshore station exhibiting the largest number of exclusive phylotypes. Overall, our findings revealed the patchy spatial distributions and distinct niche partitioning of mycoplankton populations across a nearshore to open ocean gradient, which improved our understanding of fungal ecology in coastal waters. IMPORTANCE Fungi are an important, but understudied, group of heterotrophic microbes in marine environments. Traditionally, fungi in the coastal ocean were largely assumed to be derived from terrestrial inputs. Yet here we find many fungal taxa are endemic to the open ocean environment but are rare or absent in nearshore waters, suggesting they are not washed into the ocean from the land. As observed for the bacterioplankton, coastal oceanographic gradients can function as habitat barriers to partition fungal communities. Compared to the bacterioplankton, however, the mycoplankton exhibit a much patchier distribution pattern, suggesting differential drivers and the potential for spatially/temporally limited habitats or strong density-dependent selection. Therefore, our results show that mycoplankton in the coastal ocean may play a significant but complementary role to that of the bacterioplankton.


Assuntos
Fungos/classificação , Fungos/genética , Micobioma/genética , Plâncton/classificação , Plâncton/microbiologia , Organismos Aquáticos/classificação , Organismos Aquáticos/genética , Biodiversidade , DNA Fúngico/genética , Ecossistema , Fungos/metabolismo , Oceanos e Mares , Plâncton/genética , RNA Ribossômico 16S/genética
14.
Genome Biol ; 22(1): 207, 2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34256809

RESUMO

BACKGROUND: The full biosphere structure and functional exploration of the microbial communities of the Challenger Deep of the Mariana Trench, the deepest known hadal zone on Earth, lag far behind that of other marine realms. RESULTS: We adopt a deep metagenomics approach to investigate the microbiome in the sediment of Challenger Deep, Mariana Trench. We construct 178 metagenome-assembled genomes (MAGs) representing 26 phyla, 16 of which are reported from hadal sediment for the first time. Based on the MAGs, we find the microbial community functions are marked by enrichment and prevalence of mixotrophy and facultative anaerobic metabolism. The microeukaryotic community is found to be dominated by six fungal groups that are characterized for the first time in hadal sediment to possess the assimilatory and dissimilatory nitrate/sulfate reduction, and hydrogen sulfide oxidation pathways. By metaviromic analysis, we reveal novel hadal Caudovirales clades, distinctive virus-host interactions, and specialized auxiliary metabolic genes for modulating hosts' nitrogen/sulfur metabolism. The hadal microbiome is further investigated by large-scale cultivation that cataloged 1070 bacterial and 19 fungal isolates from the Challenger Deep sediment, many of which are found to be new species specialized in the hadal habitat. CONCLUSION: Our hadal MAGs and isolates increase the diversity of the Challenger Deep sediment microbial genomes and isolates present in the public. The deep metagenomics approach fills the knowledge gaps in structure and diversity of the hadal microbiome, and provides novel insight into the ecology and metabolism of eukaryotic and viral components in the deepest biosphere on earth.


Assuntos
Organismos Aquáticos/metabolismo , Archaea/metabolismo , Bactérias/metabolismo , Caudovirales/metabolismo , Fungos/metabolismo , Sedimentos Geológicos , Organismos Aquáticos/classificação , Organismos Aquáticos/genética , Archaea/classificação , Archaea/genética , Bactérias/classificação , Bactérias/genética , Caudovirales/classificação , Caudovirales/genética , Ecossistema , Fungos/classificação , Fungos/genética , Sedimentos Geológicos/microbiologia , Sedimentos Geológicos/virologia , Redes e Vias Metabólicas/genética , Metagenoma/genética , Microbiota/genética , Oceano Pacífico , Filogenia , Água do Mar/microbiologia , Água do Mar/virologia
15.
Eur J Protistol ; 80: 125808, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34280731

RESUMO

Percolomonads are common freshwater, marine and hypersaline tetraflagellated organisms. Current phylogenetic analyses of eukaryotes comprise only two species of this underinvestigated family. Here, we studied the morphology, salinity tolerance and 18S rDNA gene-based phylogeny of seven percolomonad cultures. We describe three new genera and five novel species of Percolomonadida based on phylogenetic distances and morphological characteristics: Barbelia atlantica, B. abyssalis, Lula jakobsenorum, Nakurumonas serrata and Percolomonas doradorae. The new species show features typical for percolomonads, one long flagellum for skidding, three shorter flagella of equal length and a ventral feeding groove. The new species comprise organisms living in marine and athalassic hypersaline waters with salinity ranging from 10 to 150 PSU. Based on these novel taxa, the taxonomy and phylogeny of Percolatea was extended and further resolved.


Assuntos
Biodiversidade , Eucariotos/classificação , Filogenia , Água do Mar/parasitologia , Organismos Aquáticos/classificação , Organismos Aquáticos/citologia , Organismos Aquáticos/genética , Eucariotos/citologia , Eucariotos/genética , RNA Ribossômico 18S/genética , Especificidade da Espécie
16.
Sci Rep ; 11(1): 11436, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34075128

RESUMO

The hadal biosphere is one of the least understood ecosystems on our planet. Recent studies have revealed diverse and active communities of prokaryotes in hadal sediment. However, there have been few studies on fungi in hadal sediment. Here we report the first isolation and cultivation of 8 fungi from the Mariana Trench sediment. The individual colonies were isolated and identified as Stemphylium sp., Cladosporium sp., Arthrinium sp., Fusarium sp., Alternaria sp., and Aspergillus sp. High hydrostatic pressure (HHP) test was carried out to identify the piezophily of these hadal fungi. Among them, 7 out of the 8 fungal isolates exhibited the ability of germination after incubation under 40 MPa for 7 days. Vegetative growth of the isolates was also affected by HHP. Characterization of secondary metabolites under different pressure conditions was also performed. The production of secondary metabolites was affected by the HHP treatment, improving the potential of discovering novel natural products from hadal fungi. The antibacterial assay revealed the potential of discovering novel natural products. Our results suggest that fungal growth pressure plays an important role in the development and production of secondary metabolites of these hadal fungi under the extreme environment in the Mariana Trench.


Assuntos
Ambientes Extremos , Fungos , Microbiologia da Água , Organismos Aquáticos/classificação , Organismos Aquáticos/crescimento & desenvolvimento , Organismos Aquáticos/isolamento & purificação , Fungos/classificação , Fungos/crescimento & desenvolvimento , Fungos/isolamento & purificação , Pressão Hidrostática , Oceano Pacífico
17.
Syst Parasitol ; 98(4): 443-453, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34120299

RESUMO

Recent examinations of some marine fishes from off the southern coast of Iraq revealed the presence of two species of Philometra Costa, 1845 (Nematoda: Philometridae): P. parabrevicollis n. sp. (males and subgravid and nongravid females) from the ovary of the bigeye snapper Lutjanus lutjanus Bloch (Perciformes, Lutjanidae) and Philometra sp. (subgravid females) from the ovary of the bartail flathead Platycephalus indicus (Linnaeus) (Perciformes, Platycephalidae). Specimens of species are described and illustrated based on light and scanning electron microscopical examinations. Philometra parabrevicollis n. sp. is mainly characterised by the length of spicules (267-285 µm) and gubernaculum (159-168 µm), the gubernaculum/spicule length ratio (1:1.64-1.76), the structure of the gubernaculum distal tip and of the male caudal end, and the body length of males (4.03-4.90 mm). The description of this new species again confirms a high degree of host specificity of gonad-infecting species of Philometra in congeneric lutjanid hosts. Although Philometra sp. parasitising P. indicus in Iraqi waters was previously recorded, its subgravid females are described for the first time. A key to gonad-infecting species of Philometra parasitic in fishes of the family Lutjanidae is provided.


Assuntos
Organismos Aquáticos/classificação , Dracunculoidea/classificação , Peixes/parasitologia , Animais , Dracunculoidea/anatomia & histologia , Feminino , Especificidade de Hospedeiro , Iraque , Masculino , Especificidade da Espécie
18.
Syst Parasitol ; 98(4): 413-422, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34046809

RESUMO

Recent examinations of some marine fishes from off the coast of South Australia revealed the presence of two species of Philometra Costa, 1845 (Nematoda: Philometridae): P. inconveniens n. sp. from the ovary (males) and body cavity (subgravid female) of the southern garfish Hyporhamphus melanochir (Valenciennes) (Beloniformes, Hemiramphidae) and Philometra sp. (gravid and subgravid females) from the body cavity of the Australian barracuda Sphyraena novaehollandiae Günther (Perciformes, Sphyraenidae) (new host and geographical records). Specimens of species are described and illustrated based on light and scanning electron microscopical examinations. Philometra inconveniens n. sp. differs from the most similar species P. longa Moravec, Barton & Shamsi, 2021, a parasite of the body cavity of the congeneric host off eastern Australia, mainly by a different structure of the gubernaculum (absence of dorsal barbs and presence of lateral extensions on its distal portion). This indicates a high degree of host specificity of these nematodes in co-occuring congeneric hosts.


Assuntos
Organismos Aquáticos/classificação , Dracunculoidea/classificação , Perciformes/parasitologia , Animais , Organismos Aquáticos/ultraestrutura , Dracunculoidea/ultraestrutura , Especificidade de Hospedeiro , Microscopia Eletrônica de Varredura , Austrália do Sul , Especificidade da Espécie
19.
J Eukaryot Microbiol ; 68(5): e12860, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34048133

RESUMO

Meringosphaera is an enigmatic marine protist without clear phylogenetic affiliation, but it has long been suggested to be a chrysophyte-related autotroph. Microscopy-based reports indicate that it has a worldwide distribution, but no sequence data exist so far. We obtained the first 18S rDNA sequence for M. mediterranea (identified using light and electron microscopy) from the west coast of Sweden. Observations of living cells revealed granulated axopodia and up to 6 globular photosynthesizing bodies about 2 µm in diameter, the nature of which requires further investigation. The ultrastructure of barbed undulating spine scales and patternless plate scales with a central thickening is in agreement with previous reports. Molecular phylogenetic analysis placed M. mediterranea inside the NC5 environmental clade of Centroplasthelida (Haptista) along with additional environmental sequences, together closely related to Choanocystidae. This placement is supported by similar scales in Meringosphaera and Choanocystidae. We searched the Tara Oceans 18S V9 metabarcoding dataset, which revealed four OTUs with 94.8%-98.2% similarity, with oceanic distribution similar to that based on morphological observations. The current taxonomic position and species composition of the genus are discussed. The planktonic lifestyle of M. mediterranea contradicts the view of some authors that centrohelids enter the plankton only temporarily.


Assuntos
Eucariotos , Organismos Aquáticos/classificação , Eucariotos/classificação , Microscopia Eletrônica , Filogenia , RNA Ribossômico 18S/genética , Suécia
20.
Parasitol Res ; 120(5): 1743-1754, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33792814

RESUMO

Parasites remainunderstudied members of most ecosystems, especially free-living infectious stages, such as the aquatic cercariae of trematodes (flatworms). Recent studies are shedding more light on their roles, particularly as prey for a diverse array of aquatic predators, but the possible fates of cercariae remain unclear. While this is critical to elucidate because cercariae represent a large potential source of energy and nutrients, determining the fate of cercariae-derived organic matter involves many logistical challenges. Previous studies utilized elemental and stable isotope analysis when examining host-parasite interactions, but none has used such approaches to track the movement of cercariae biomass within food webs. Here we report that Plagiorchis sp. cercariae were effectively labelled with 13C by introducing this compound in the food of their snail host. We then added 13C-labelled cercariae as a potential food source to experimental mesocosms containing a simplified model freshwater food web represented by diving beetles (Dytiscidae sp.), dragonfly larvae (Leucorrhinia intacta), oligochaete worms (Lumbriculus variegatus), and a zooplankton community dominated by Daphnia pulex. The oligochaetes had the highest ratio of 13C to 12C, suggesting benthic detritivores are substantial, but previously unrecognized, consumers of cercariae biomass. In an experiment where L. variegatus were fed mass equivalents of dead D. pulex or cercariae, growth was greater with the latter diet, supporting the importance of cercariae as food source for benthic organisms. Given the substantial cercariae biomass possible in natural settings, understanding their contributions to energy flow and nutrient cycling is important, along with developing methods to do so.


Assuntos
Ciclo do Carbono , Cercárias/fisiologia , Água Doce , Trematódeos/fisiologia , Animais , Organismos Aquáticos/classificação , Organismos Aquáticos/crescimento & desenvolvimento , Organismos Aquáticos/metabolismo , Biomassa , Isótopos de Carbono/análise , Isótopos de Carbono/metabolismo , Cercárias/crescimento & desenvolvimento , Cercárias/metabolismo , Ecossistema , Cadeia Alimentar , Água Doce/química , Água Doce/parasitologia , Trematódeos/crescimento & desenvolvimento , Trematódeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA